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Corrections to “An Analysis of Instantaneous
Frequency Representation Using Time-Frequency
Distributions—Generalized Wigner Distribution”

LJ. Stankovié¢ and S. Stankovié¢

In the above paper,’ due to a problem with telecommunications
during the time of production of the above-named paper, we were
unable to review the page proofs. Some errors remained or occurred
in typesetting. Our corrections follow.

The last equation on page 550 (first column) is split in the wrong
place. It should read

L¢(t+7/2L)—L¢ (t—7/2L)

o 1 26%() r7\3
= ¢ O+ 5 T (3)

(3) 7\3
s(tr /) - ot = r/2)=¢ (o + 22 (DY

Factor 27 is missing on the right-hand side of (3). It should read

ITFT(w,t) = 2x6(w — ¢'(t)).
In addition, factors L are missing on the right-hand sides of (5),

@m
(9), (10), and (13).
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New Cumulant-Based Inverse Filter Criteria for
Deconvolution of Nonminimum Phase Systems

Chii-Horng Chen, Chong-Yung Chi, and Wu-Ton Chen

Abstract—This work proposes a new family of cumulant-based inverse
filter criteria Ji7 ., which require a single slice of M/ th-order (M >
3) cumulants, a (2m)th-order cumulant, and a (2M — 2m)th-order
cumulant of the inverse filter output where 1 < m < M — 1, for
deconvolution of linear time-invariant (LTI) nonminimum phase systems
with only non-Gaussian output measurements contaminated by Gaussian
noise. Some simulation results are then presented for a performance
comparison of the proposed criteria, Tugnait’s criteria, and Chi and
Kung’s criteria. Finally, conclusions are presented.

1. INTRODUCTION

In blind deconvolution, we are presented with the problem of
restoring the input signal of an unknown linear time-invariant (LTT)
signal-distorting system with only noisy output measurements. A
widely used approach to this problem is the well-known correlation
(second-order statistics) based predictive deconvolution [1], [2] that
involves the design of a minimum-phase linear prediction error (LPE)
filter used as an inverse filter. However, besides the fact that LPE
filters are sensitive to additive noise, when the unknown system is
nonminimum phase, allpass distortion (phase distortion) will remain
in the deconvolved signal. On the other hand, higher order statistics-
based inverse filter criteria have been reported for identification and
deconvolution of nonminimum phase LTI systems. Recently, Chi and
Wu [3], [4] proposed a unified class of inverse filter criteria using two
cumulants, in which Wiggins® criterion [5], Shalvi and Weinstein’s
criterion [6], and Tugnait’s criteria [7] are included in addition to
a number of new criteria. Chi and Kung [8] also proposed inverse
filter criteria that use all Mth-order (M > 3) cumulants and thus
require much larger computational load than members of Chi and
‘Wu’s unifled class of inverse filter criteria.

This work proposes a new family of cumulant-based inverse filter
criteria that use a single slice of cumulants and two single cumulants
(with different orders) of inverse filter output. Section II briefly
reviews Chi and Kung’s criteria followed by Chi and Wu’s unified
class of inverse filter criteria. The new family of cumulant-based
inverse filter criteria is presented in Section IIl. Some simulation
results are then presented in Section IV. Finally, we draw some
conclusions.

II. A BRIEF REVIEW OF CUMULANT-BASED INVERSE FILTER CRITERIA

Assume that data 2(k),k =0,1,---, N — 1 were generated from
the following convolutional model

z(k) = u(k) = h(k) + n(k)

=53

> h(yulk — i) + (k) 1

i=—o00

under the four assumptions:
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A1) The LTI system h(k) is causal stable and a stable inverse

filter h;(k) of the system exists.

¢ A2) The input u(k) is real, zero-mean, stationary, independent
identically distributed (i.i.d.), non-Gaussian with Mth-order
cumulant ;.

* A3) the measurement noise n{k) is zero-mean Gaussian with
unknown statistics. '

* Ad) u(k) is statistically independent of n(k).

Let ¢(k) be the output of a stable filter v(k) with input z(k), i.e.
e(k) = (k) « v(k) = u(k) = g(k) + w(k) 2)

where w(k) = n(k) % v(k) is also a Gaussian noise sequence by
A3), and

g(k) = h(k) % v(k) 3)

is also a stable filter by Al). Next, let us briefly review some
existing cumulant-based inverse filter criteria that lead to the optimal
v(k) = ahi(k — 1) (.e., g(k) = ad(k — 7)) where & # 0 is an
unknown scale factor and 7 is an unknown time delay.

A. Chi and Kung’s Criteria

Chi and Kung [8] proposed the following cumulant-based inverse
filter criteria
N 1
Ju(v(k)) =

C%1,.(0,0,---,0)
Z Z Cirelkr, ko, karo1) (4

(K1, kp_1)ERM 4

where M > 3, Rur 4 denotes the domain of support associated with
the Mth-order cumulant function of gth-order non-Gaussian moving
average (MA) processes and Cay ¢ (k1,- -, kar—1) is the Mth-order
cumulant function of ¢(k) given by [10] as follows:

Cue(ky, - kv—1)

=y k) gk +k) gk +ka—r). (5

k=—o0

It was also shown in [8] that the optimum ¢(%) by minimizing Ju
leads to the associated §(k) = ab(k—7) when ¢ = co. However, the
required computational load increases exponentially with M because
the total number of (M — 1)-dimensional vectors (ki,---,kar—1)
included in Ry, is proportional to ¢™ ', Because Jys(v(k)) is a
highly nonlinear function of v(k), iterative nonlinear optimization
algorithms are used to find the optimum v(%).

B. Chi and Wu’s Criteria

Chi and Wu [3], [4] proposed a unified class of inverse filter criteria
using a (2s)th-order cumulant and an (! 4+ s)th-order cumulant

|Cts.c (0, -+, O
|C22,e(0, -, )+

where | > s > 1. It was shown in [4] that the inverse filter esti-
mate obtained by maximizing Ji1. 25(v(k)) is a consistent estimate
(except for an unknown scale factor and an unknown time delay)
of the true inverse filter h;(k) for the two cases that s = 1 along
with SNR = oo and that s > 1 along with finite SNR. Iterative
optimization algorithms are also required to find the optimum v(k)
because a closed-form solution for v(%) can not be obtained. Note
that J30(1 = 2,5 = 1), Jao(l =3,s = 1) and Js4(l = 4,5 = 2)
were proposed by Tugnait [7]. Wiggins’ inverse filter criterion [5]
Jw = Elc*(B)]/(E[e*(k)])? is related to Ju 2 by Ju,2 = |Jw — 3|?

jz+s,2s(’0(k)) = (6)
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and Shalvi and Weinstein’s inverse filter criterion [6] is Jsw =
|C4.(0,0,0)] subject to the constraint E[e* (k)] = E[u®(k)]. Next,
let us present a new family of cumulant-based inverse filter criteria
that use a single slice of cumulants and two single cumulants (with
different orders) of e(k).

III. NEW FAMILY OF CUMULANT-BASED INVERSE FILTER CRITERIA
The new family of cumulant-based inverse filter criteria is de-
scribed in the following theorem.
Theorem 1: Let e(k) be the output of a stable LTI filter v(k) with
the input x(k) generated from (1) under the previous assumptions
A1) through A4). Let #(k) be the optimum v(%) such that

it m (v(k))
_|Cam (0, -, 0)] - |Cont —2m (0, - -, 0)]
- 014\4&(07‘ -, 0)

SO0, Ok = ke ko =) (D)

k=—o0

is minimum when v(k) = o(k), where M > 3,1 <m < M —1
but m # M/2 when M/2 is odd. Then

Tt (6(0) = min{Tag (o)} = 222 20220l )
M

and the associated g(k) (see (3)) satisfies that g(k) = ad(k — 7)
where o # 0 is an unknown scale factor and 7 is an unknown time
delay, for the following two cases: (i) m # 1, M —m # 1; (ii)
SNR = oc. ;

The proof of this theorem is given in the Appendix. Two remarks
regarding the proposed criteria given by (7) are worth mentioning
here.

R1) The case (i) m # 1, M — m # 1 indicates that the inverse
filter associated with Jus ., is identifiable for finite signal-
to-noise ratio (SNR) only when Jus .. does not involve
second-order cumulant C3 .(0) (i.e., variance) of e(k). The
case (ii) SNR = oo indicates that the inverse filter associated
with Jas,m is always identifiable for this case.
The proposed criteria Jas, . (v(k)) given by (7) use a single
slice of Mth-order cumulants (vis # 0), a (2m)th-order
cumulant (v2,, # 0) and a (2M — 2m)th-order cumu-
lant (y2rr—2m # 0) of e(k). Moreover, Jur,m(Suv(k)) =
Ju m(v(k)) for all 8 # 0 (by (2), (5) and (7).

Next, let us present how to find the optimum inverse filter v(k)
with finite data @(0),z(1),---,@(N — 1). Assume that v(k) is a
causal finite impulse response (FIR) filter of order equal to L, i.e.

R2)

L
e(k) =Y v(j)a(k - j). (9)
=0
We try to find the optimum v = (v(0),v(1),--,v(L))T such that
jM,m(E)
= [Come (0. 0} |Conr—2m (0, 0)

é}‘l%)E(D’..'?O)

K
© Y G0, 0k = ks ke = R). (10)

k=—K

is minimum where C’M,e(kl, -+, knrr—1) denotes the biased A th-
order sample cumulant function of e(k) and K is a positive integer.
The optimum v can be found by an iterative gradient-type opti-
mization algorithm. At the nth iteration, ¢, _; is normalized by
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[|&,,_.1] = 1 (see R2)) and then updated by
~ avjﬂ\/f,rn (2)

. =10

by =u =0 an

v=2,
where p is a positive constant. A correlation-based LPE filter can
be used to initialize the above algorithm because it has the same
amplitude spectrum with the optimum inverse filter except for a
scale factor when SNR = co. Let us conclude this section with
the following two remarks.

R3) The proposed criteria J.m, which use 2K + 3 cumulants
except the case when m = M/2 and m is even 2R + 1
cumulants Chz,e(0,---,0, knrj2 = kyooo ka1 = k) for
k= —K,---, K are used for this case), are computationally
faster than Chi and Kung’s criteria Jur given by (4) since
the number of cumulants used by the latter is proportional
to g™, but the former require larger computational load
than members of Chi and Wu’s unified class of inverse filter
criteria (see (6)) using two cumulants.

The parameter L can be chosen large enough such that the
optimum ¢ (k) = 0 for k close to zero and k close to L.
On the other hand, the parameter A plays the same role
as the parameter ¢ in Chi and Kung’s criteria (see 4)).
In other words, the value chosen for K is a tradeoff of
computational load and performance for the proposed criteria.
By our experience, a value between 10 and 20 for K is
suggested.

R4)

IV. SIMULATION RESULTS

Two simulation examples are to be presented to support the
proposed new cumulant-based inverse filter criteria in this section. For
ease of later use, let 1, vp(1),v5(2),- -+, vs(1) denote coefficients of
the minimum phase /th-order LPE filter obtained by Burg’s algorithm
[2].

Example 1—Performance Test: A second-order nonminimum
phase ARMA system with transfer function (taken from [4], 8D
given by

1-27:"1 405272

HG) =000
was convolved with a zero-mean exponentially distributed random se-
quence u(k) to generate synthetic data z(k) for SNR = 5 dB, 10 dB,
and 15 dB (white Gaussian noise). The proposed criterion J3.1 with
K set to 10, Tugnait’s criteria J3,2, J4,2, Je.4, and Chi and Kung’s
criteria J3 with ¢ = 10 were used to estimate the inverse filter v(k)
of order L = 16 by the previous gradient-type iterative algorithm
with an initial condition of 3, = (0,---,0,1,v(1). Lb(S))T

Thirty independent estimates ©(k), denoted by (k)i =
1,2,---,30, (normalized by ||2;|| = 1) with the unknown time
delay between o;(k) and the true inverse filter hy(k) artificially
removed were obtained to calculate the mean square error (MSE)
defined as

12)

MSE = 302{kz_9]ah1(k)—v(k) } (13)
where « is an artificial scale factor chosen such that
Sr—_o ladi(k)[> = 1 because the true inverse filter h7(k) ~ 0 for
k < —9 and k > 7 for this case. The obtained simulation results
for N = 2048 and 4096 are shown in Table I. From this table,
one can see that J; performs best with much larger computational
load than the other criteria. The proposed criterion J3 1 performs
slightly better than J32 because the former uses more necessary
third-order cumulants, which coherently provide information about
the inverse filter, while the latter (Js o) outperforms Js 2 because
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TABLE 1
SIMULATION RESULTS OF EXAMPLE 1. MSE's OF THE ESTIMATED INVERSE
FILTER ASSOCIATED WITH CRITERIA J3,1, J3,2, Jaz, Jo,a
AND J3 FOR SNR = 5 DB, 10 DB AND 15 DB ARE SHOWN
IN THE TABLE FOR N = 2048 AND 4096, RESPECTIVELY

MSE
7 ~ - _ —_— ~
N | SNE J31 J32 Jaz2 Je,4 J3
15 dB | 0.0193 | 0.0190 | 0.0430 | 0.7401 | 0.0141
2048 | 10 dB | 0.0434 | 0.0446 | 0.0792 | 0.7498 | 0.0177
5dB | 0.1246 | 0.1348 | 0.2454 | 0.5802 | 0.0387
15 dB | 0.0093 | 0.0127 | 0.0287 | 0.8087 | 0.0071
4096 | 10 dB | 0.0261 | 0.0358 | 0.0550 | 0.7796 | 0.0106
5dB | 0.1338 | 0.1128 [ 0.1548 | 0.6584 | 0.0246

fourth-order sample cumulants have larger variance than third-order
sample cumulants [10]. The criterion Js,4 performs worst partly
because sixth-order sample cumulants have much larger variance
than sample cumulants used by the other criteria, and partly because
C4.(0,0.0) = Ele*(k)] — 3(E[e*(k)])* (in the denominator of
Js.4) always tends to zero resulting in Js 4 unbounded (maximization
of Je.4) in some of the thirty realizations.

Example 2—Seismic Deconvolution: The driving input u(k) that
was assumed to be a Bernoulli-Gaussian sequence (taken from
[9]) and a third-order nonminimum phase ARMA system (also
taken from [9]) were used to generate a set of synthetic data x(k)
shown in Fig. 1{(a) for N = 512 and SNR = 15 dB (white
Gaussian noise). Fig. 1(b) shows the predictive deconvolved signal
es(k) (dotted line) obtained by processing x(k) with an LPE filter
vp(k) of order L = 30. One can see from this figure that each
spike is associated with a residual wavelet (allpass distortion) in
addition to a scale factor, because only the amplitude response
of nonminimum phase source wavelet can be equalized by the
minimum phase LPE filter. The inverse filter v(k) was also assumed
to be a FIR filter of order L = 30. Note that v3 = 0 but
~4 # 0 for this case. The proposed criterion Jap with K = 186,
Tugnait’s criteria J4 2 and Jo,a were used to estimate v by the
previous gradient-type iterative algorlthm with an initial condition
of 2y = (0,--+,0.1,vp(1),-- vb(l5)) The deconvolved signals
e(k) (dotted lines) associated with J4,14,J4)g and Js 4 are shown
in Figs. 1(c), (d), and (e), respectively, where unknown time delays
between e(k) and u(k) were artificially removed. One can see that
the deconvolved signals shown in Fig. 1(c) and (d) approximate « (k)
(solid lines) well except for a scale factor (without phase distortion).
On the other hand, the deconvolved signal e; (%) shown in Fig. 1(b)
offers more information about the true input w(k) (solid line) than
the deconvolved signal e(k) (dotted line) shown in Fig. 1(e), which
is obviously not a good approximation to u(k). This indicates that
higher SNR and larger data length N are required by Jo.4 for
acceptable performance.

V. CONCLUSION

We have presented a new family of cumulant-based inverse fil-
ter criteria Jasm, described in Theorem 1, for deconvolution of
nonminimum phase LTI systems with only non-Gaussian output
measurements. The proposed criteria require a single slice of Mth-
order (M > 3) cumulants as well as two other cumulants of order
equal to 2m and 2M — 2m, respectively (see R2)). Two simulation
examples were then provided to support the proposed inverse filter
criteria Jas,m. The presented two examples also support that Js,1
performs slightly better than Tugnait’s criterion J3,2 and the latter
performs better than Tugnait’s criterion J4 o, and that J3: also
performs much better than Tugnait’s criterion Js,4. Chi and Kung’s
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Fig. I. Simulation results of Example 2: (a) Synthetic noisy data for N = 512 and SNR = 15 dB; (b) predictive deconvolved signal e, (k) (dotted line)
together with the true input signal (solid line); (c) deconvolved signal e(k) (dotted line) associated with the proposed criterion .f4,1 together with the true input
signal (solid line); (d) deconvolved signal e(k) (dotted line) associated with criterion J4 2 together with the true input signal (solid line); (e) deconvolved
signal e(k) (dotted line) associated with criterion Jg 4 together with the true input signal (solid line).
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criteria Jas, whose computational load increases exponentially with
M, perform better than the proposed criteria /s m, whose compu-
tational load is only linearly proportional to the parameter K (see
R3)), a tradeoff parameter of computational load and performance
(see R4)). Therefore, when M > 4, Chi and Kung’s criteria T may
become impractical due to too large computational load.

APPENDIX
PROOF OF THEOREM 1
The case (i) indicates that all the cumulants used in Jus » have
orders greater than two. Moreover, the M th-order cumulant function
of e(k) given by (5) is also true for all M > 2 for the case (ii).
Therefore, (5) can be used in the following proof for these two cases.
Substituting (5) into (7) yields

Tatm(v(k)) = m_%szz_mi
. {Z] ()} - {E] g2M—2m(j)}
=, 9m0)- )Y
X e T+ )Y

05y
= bem 2 temanl g ). pa(ee) A
v
where
{5, OHE, 77 6)}
) = . A2)
f (9( )) {Z] g”’(j)'g‘M_m(j)} (
and
m N M—my )12
falo(ky) = 2 &, 0" RY

{=, M)}
Note, from (A.1), (A2), and (A3), that Jurm(g(k)) > min
(Tutm(g())} = [am - 1231 -2ml /73 as given by (8) because,
for all g(k) # 0 (zero sequence), fi(g(k)) > 1 by the Schwartz
inequality and f2(g(k)) > 1. The optimum solutions for g(k)
associated with min{Jas,»{g(k))} must be solutions for both
fi(g(k)) =1 and f2(g(k)) = 1. Hence, let us first find the solution
set S1 = {g(k) | f1(g(k)) = 1} and then search S; for the g(k)
satisfying f2(g(k)) = 1.
By the Schwartz inequality, f1(g(k)) = 1 holds only when

g™ (k) = By (k)

where 3 # 0 is a constant. Without loss of generality, let us assume
that 3 > 0. One can easily infer, from (A.4), that

g(k) = agq(k), ifM—2m#0

where a = gY/M=2™) (k) is a binary sequence of {1,0} when
M — 2m is odd and a trinary sequence of {1,0, —1} when M — 2m
is even. Remark that ¢(k) must be a finite-length sequence, otherwise
g(k) is unstable, since Y, lg(k)| = a), l¢(k)] = oc when
M —2m # 0. On the other hand, when M = 2m, f1(g(k)) = 1 (see
(A.2)) for all g(k) # 0. In other words, when M — 2m % 0, then

S1 = 811 = {g(k) | g(k) # 0 is stable and given by (A.5)}

(A4)

(A5)

and when M = 2m
S1 =812 = {g(k) | g(k) # 0 is stable}.

In order to find the optimum g(k) satisfying f2(g(k)) = 1 where
g(k) € Sy, let us consider the following three cases: (i) M —2m # 0
is odd (M is odd); (ii)) M — 2m # 0 is even (M is even) followed
by the case; (iii)) M = 2m but m is even.
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A M —2m # 0 Is 0dd (M Is Odd): (g(k) € S11)

As previously mentioned, ¢(k) is a finite binary sequence of {1, 0}
for this case. Let

roa(k) = ali)g(i + k) (A6)
which is the autocorrelation function of ¢(k). Substituting (A.5) into
(A.3) gives rise to

falg(k) =

7,0 2w 21

because ¢ (k) = ¢ ™ (k) = ¢™(k) = q(k). Obviously, the
equality in (A.7) holds only when rqq(k) = 0 for all k& # 0. In
other words, ¢(k) = §(k — 7) where 7 is an arbitrary integer simply
because any other binary sequence g(k) # 0 results in 744(k) # 0
for some k # 0. Therefore, f2(g(k)) = 1 for g(k) € Si1 leads to
the result g(k) = 6(k — 7) or g(k) = ab(k — 7).

(A7)

B. M —2m # 0 Is Even (M Is Even): (g(k) € S11)

Because ¢(k) is a finite trinary sequences of {—1, 1,0}, this case
includes two subcases as follows:
m Is Even: Let

p(k) = ¢* (k)

which is also a binary sequence of {1,0}. Substituting (A.5) into
(A.3) gives

(A.8)

f2(g(k)) = 7,2—1(0) S vk > 1 (A.9)
pp %

since both 4 and m are even where 7,,(k) is the autocorrelation
function of p(k). Note that (A.9) is actually the same as (A.7) because
both p(k) and ¢(k) are binary sequences of {1,0}. Therefore, as in
the previous case, f2{g(k)) = 1 for g(k) € Si1, also, leads to the
result p(k) = §(k—7) or g(k) = £6(k —7) or g(k) = £ab(k—7).

m Is Odd: Note that ¢"™ (k) = ¢ ™ (k) = ¢(k) but ¢™ (k) =
p(k) for this case. Substituting (A.5) into (A.3) gives

folg(k)) = TQIW D orie(k) > 1

k

(A.10)

since 75(0) = 7¢4(0) > 0, although 7p,(k) # rqq(k) for & # 0.
Again, the equality in (A.10) holds only when 74,(k) = 0 for all
k # 0. What remains to prove is that the trinary sequence g(%k) with
rqq(k) = 0 for & # 0 is unique and equal to £6(k — 7). Assume
that ¢() # 0 and that (7 + k) = 0 for k < 0 and for k£ > [ since
g(k) must be a finite sequence. Then

re{l=1)=g(r)-g(r+1-1)=0=g(r+1-1)=0
reg(l = 2) = ¢(T)g(T +1=2) + q(r+ L)g(r + 1~ 1)
=q(r)g(r+1-2)=0=>¢g(r+1-2)=0

g(t+1)=0.

In other words, ¢(k) = £8(k — 7), or the optimum g(k) associated
with fo(g(k)) = 1 for g(k) € Sii too has the form g(k) =
+ab(k — 7) for this case.

C. M = 2m but m Is Even: (g(k) € S12)
For this case, it can be easily inferred that f2(g(k)) = 1 given by
(A.3) for g(k) € Si2 leads to

9(j)-g(i+k)=0 Vk#0 (A.1D)
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since both m and M — m are even. Assume that g(7) # 0. Then
one can easily see, from (A.11), that ¢(j) = 0 for all § # 7. In other
words, the optimum ¢(k) has the form g(k) = aé(k — 7). Thus, we
have completed the proof.
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Fractal Estimation Using Models on Multiscale Trees

Paul W. Fieguth and Alan S. Willsky

Abstract—In this correspondence, we estimate the Hurst parameter H
of fractional Brownian motion (or, by extension, the fractal exponent ¢
of stochastic processes having 1/ f¢-like spectra) by applying a recently
introduced multiresolution framework. This framework admits an effi-
cient likelihood function evaluation, allowing us to compute the maximum
likelihood estimate of this fractal parameter with relative ease. In addition
to yielding results that compare well with other proposed methods, and
in contrast with other approaches, our method is directly applicable with,
at most, very simple modification in a variety of other contexts including
fractal estimation given irregularly sampled data or nonstationary mea-
surement noise and the estimation of fractal parameters for 2-D random
fields. :
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Fig. 1. Dyadic tree structure used for the estimator of this correspondence.

I. INTRODUCTION

Many natural and human phenomena have been found to possess
1/ f-like spectral properties, which has led to considerable study of
1/f processes. One class of such processes that is frequently used
because of its analytical convenience and tractability is the class of
fractional Brownian motion (fBm) processes, which were introduced
by Mandelbrot and Van Ness [8]. For practical computation purposes,
we consider only sampled versions of continuous time fBm processes
B(t), ie.

Blk] = B(kAt) ke Z 0}
for which the associated nonstationary covariance is

P 4 P =k =m*T) @)

E(B[K, Blm]} = ; (207

where o and H are scalar parameters that completely characterize
the process, and H is the quantity we wish to estimate. Previous
estimators have been developed addressing this problem, notably
those of Wornell and Oppenheim [11], Kaplan and Kuo [4], Tewfik
and Deriche [10], and Flandrin [3]. The exact maximum likelihood
(ML) calculation for H is computationally difficult (see [10]); to
address this difficulty, fractal estimators typically fall into one of the
two following classes to achieve computational efficiency:

1) optimal algorithms, admitting efficient solutions, based on 1/ f-
like models other than fBm;

2) approximate or suboptimal algorithms developed directly from
the fBm model.

Our approach and that of [11] fall into the former category, whereas
the methods in [3], [4], and [9] fall into the latter. In particular, the
approach in [11] is based on a 1/f-like process constructed using
wavelets in which the wavelet coefficients are independent, with
variances that vary geometrically with scale with exponent H. The
method in [4] determines the exact statistics of the Haar wavelet
coefficients of the discrete fractional Gaussian noise (DFGN) process
F[k] = Blk+1]— B[k] and then develops an estimator by assuming,
with some approximation, that the coefficients are uncorrelated.

The goal of our research, on the other hand, is the development
of a fast estimator for H that functions under a broader variety of
measurement circumstances, for example, the presence of gaps in
the measured sequence, measurement noise having a time-varying
variance, and higher dimensional processes (e.g., 2-D random fields).
The basis for accomplishing this is the utilization of a recently
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